
Policy-based traffic generation for IP-based networks

Falko Dressler
Autonomic Networking Group, Dept. of Computer Science 7

University of Erlangen-Nuremberg
Erlangen, Germany

dressler@informatik.uni-erlangen.de

Abstract—Many testbeds and research projects rely on the
generation of artificial network traffic. Such solutions are used
for protocol or architecture verification, performance tests, and
demonstrations. Even though a huge amount of traffic generators
have been developed in the past, many of them still suffer from
similar problems, e.g. they are either designed for throughput
tests or protocol tests. In this paper, we present npag, a new
generation traffic generator for IP-based networks. It features a
policy-based configuration and a modular design making it
feasible to employ it in many application scenarios ahead of
simple throughput tests. For example, it allows the generation of
packets with arbitrary header and payload information and to
measure detailed quality of service parameters.

Keywords—Network Monitoring, Traffic Analysis, Statistical
Evaluation, Network Security

I. INTRODUCTION
The analysis and test of mechanisms in communication

networks is essential to develop and verify new protocols, or
for performance analysis and quality of service measurements.
Especially, if a testbed or experiments in real networks is not
feasible, such as in case of denial of service attacks or other
security concerns, mostly artificial network traffic is used that
is generated by packet and traffic generators. The requirement
for such approaches is, for example, discussed in [1]. Many
tools are available today, e.g. the measurement tools ttcp and
Iperf, the packet generator netcat, or the flow generator
harpoon [3]. As shown in section III, all these tools are limited
in the one or other direction. In this paper, we present npag
(Network Packet Generator) and its distributed control system
paco (Packet Coordinator). These tools have been developed
having two application scenarios in mind: network security
tests and protocol engineering. Special focus was laid on the
distributed and coordinated functioning and the flexible
configuration. Therefore, we developed a policy-based
description system to describe packet information as well as
traffic patterns. Both tools were made available as open source.

II. HISTORY PROJECT
The aim of the HISTORY (High Speed Network

Monitoring and Analysis) project is to build an architecture,
methods, and tools for distributed analysis of network traffic
[2]. In cooperation between the Autonomic Networking Group
(University of Erlangen, Germany) and the Computer
Networks and Internet group (University of Tübingen,

Germany), we work on new methods for high-speed network
monitoring, which build a basis for network security
architectures including intrusion detection and traceback
mechanisms. The network monitoring environment makes it
possible to collect information about network traffic and its
behavior in distributed network environments capable to
operate on high-speed network links. Additionally, we ensure
the interoperability of our tools by contributing to the
standardization process in these areas in the IETF working
groups IPFIX, PSAMP, and NSIS. In addition to the presented
traffic generation environment, the main objective is to develop
methods for handling high amounts of statistics and packet data
even with cheap low-end components. Visualization techniques
and anonymization methods round off the big picture of a
visionary environment for all challenges in network monitoring
and analysis. Developed tools are made available under an
open source license. The applicability was already verified by
employing the monitoring equipment in research projects
focusing on efficient intrusion detection or accounting.

III. RELATED WORK
There are many traffic generators available. A summary of

selected tools is provided in the following. The basic idea of
this overview is to show needed dimensions of configurability
and application.
Toolkit Packet

definition
Traffic
model

Parallel
operation

Packet
types

ttcp No Through-
put

No TCP, UDP

NetPerf No Through-
put

No TCP, UDP

NetSpec Limited Variable Yes TCP, UDP

Iperf No Though-
put

Yes TCP, UDP

DBS Limited Variable Yes TCP, UDP

Harpoon No Variable Yes TCP, UDP

npag Yes Variable Yes TCP,UDP,
ICMP,
user-
defined

IV. NPAG – NETWORK PACKET GENERATOR

A. Objective
The primary objective for developing “yet another” traffic

generator was to overcome the disadvantages or missing
functionality of other tools. The following requirements were
considered during the development and distinguish npag from
other proposals:

• Variable traffic rates including bursty behavior
• Long and short term measurements
• Support for different types of packets (IP, ICMP, …)

including user-defined packets, e.g. for protocol tests
• Quality of service measurements (loss, delay, …)
• Support for parallel data streams
• Flexible configuration scheme

B. Design
In a distributed manner, npag is intended to be used to

generate traffic at multiple locations in the network in order to
simulate observable network traffic (see Figure 1). For
example, DDoS (distributed denial-of-service) attacks can be
formulated and executed.

Client

Client

Client

Client Generator

User Spezifikation

Server

Server

Server

NTP

Network

Figure 1. System architecture

The design of npag follows the following abstractions and
paradigms. Basically, a client-server model is presumed that
allows considering bi-directional protocol actions such as
complete TCP connections. If there is no response from a client
desired, the client abstracts the final destination for packets and
packet flows. Multiple flows are supported by concurrently
running threads that are controlled by a central coordinator.
The measurement of quality of service parameters is provided
by automatically included timestamps and sequence numbers
into each packet (for particular measures, such as one-way
delay, we consider previously synchronized clocks). The main
objective for npag was to make it controllable by policy-based
configuration schemes. This was established using a policy-
language for traffic description that is described in the
following. The architecture of npag is shown in Figure 1.

C. Policy-based configuration
The traffic as observed in real networks such as the Internet

shows a sophisticated behavior. Bursty behavior, long-range
dependencies, and other abstractions are used to model such
behavior. The traffic behavior of artificially generated traffic
should be configurable similar. Obviously, the data rate must

be adaptable as well as packet size distribution. The following
example depicts the description of traffic behavior for npag:

1 traffic {
2 burst { # 1st burst
3 packets = 100;
4 delay = 0.1;
5 repeat = 4;
6 }
7 bust { # 2nd burst
8 packets = 200;
9 delay = 0.2;
10 repeat = 2;
11 }
12 }

Two bursts are configured (line 2 and 7). The first one is
intended to send 100 packets in a burst, wait for 0.1 seconds,
and repeat this pattern 4 times. Similarly, the second one sends
200 packets each 0.2 seconds. Both bursts represent the same
statistics over a long period of time (400 packets in 0.4
seconds) but a different behavior regarding the bursty behavior.

The following example shows a complete stream definition.
In this example, a TCP connection is established between two
systems defined by their IP addresses and TCP port numbers.
Then, 100 packets of size 100 are exchanged.

1 stream {
2 tcp { # TCP protocol information
3 sport = 5000;
4 dport = 5001;
5 }
6 ip { # IP protocol information
7 src = 192.168.178.2;
8 dst = 192.168.178.1;
9 }
10 traffic { # traffic behavior
11 burst {
12 packets = 100;
13 size = 100;
14 }
15 }
16 }

The envisioned application range includes protocol tests as
well. Therefore, it is necessary to support the composition of
variable user-defined packets even if they are not protocol
conform. Examples include IP address spoofing, address
misuses (invalid addresses, source equal to destination
address), invalid flags, or invalid set other header fields. The
following example outlines the use of npag for this purpose:

1 stream {
2 ip {
3 src = 192.168.178.24;
4 dst = 192.168.178.24;
5 version = 3; # IP version 3
6 df = 1; # modify IP
7 mf = 1; # header fields

8 ttl = 255;
9 }
10 tcp {
11 sport = 5000;
12 dport = 5001;
13 seq = 5; # TCP header
14 acknum = 12345; # fields
15 fin = 1; # and flags
16 syn = 1;
17 ack = 1;
18 }
19 traffic {
20 burst {
21 packets = 100;
22 size = 100;
23 }
24 }
25 }

Npag was implemented in C, whereas the further
extensibility was especially focused on. Therefore, the system
design follows a modular structure and a flexible API to
integrate new functionality. In general, npag runs on every
UNIX-based operating system but some special libraries to
support user-defined packet headers are limited to Linux.

D. Outlook
Additional functionality can easily be includes. For

example, an extension for dynamic packet generation, i.e. the
creation of packets based on random variables to fill particular
header fields, is an important functionality to test network
security solutions. We think of an additional function that
replaces static assignments in the packet definition by ranges or
pure statistical methods.

V. PACO – PACKET COORDINATOR
Paco was developed to provide a centralized coordination

of distributed packet generators. Basically, its development was
driven by the need for more convenient control and
management.

Figure 2. Architecture of paco

The main functionality of paco is the management of npag
jobs. The JAVA-based paco allows adding standard jobs like
UDP, TCP, or ICMP floods. Additionally, individual jobs can
be configured using the npag’s policy-language. The

maintenance of the centrally stored jobs is independent from
the state of the probes. Regularly, the jobs are transmitted to
the probes for subsequent execution. Therefore, the probes can
operate independently and only a limited connectivity to the
management unit is necessary. The basic architecture is shown
in Figure 2. The design of paco was driven by these
requirements: distributed operation, distinction between a
central management unit (MU) and decentralized probes, and
support for a graphical user interface (a screenshot of paco is
shown in Figure 3). The following tasks have to be executed:

MU Probe
Probe communication
• Availability
• Req. for time synchr.
• Submission of jobs

MU communication
• State maintenance
• Time synchr.
• Job reception

Job management
• Creation
• Removal
• Inspection
• Termination

Job management
• Execution
• Termination

Figure 3. Screenshot of paco’s main screen

Future extensions will include the management of packet
receivers, the collection of measurement results, and a secured
connection between the management unit and the Probes.

ACKNOWLEDGEMENTS
This work is part of the HISTORY project. Especially, I

wish to thank my students Christian Bannes and Rodrigo Nebel
for doing most implementations.

REFERENCES
[1] P. Barford and M. E. Crovella, "Generating representative workloads for

network and server performance evaluation," Proceedings of ACM
SIGMETRICS, Madison, WI, June 1998, pp. 151-160.

[2] F. Dressler and G. Carle, "HISTORY - High Speed Network Monitoring
and Analysis," Proceedings of 24th IEEE Conference on Computer
Communications (IEEE INFOCOM 2005), Miami, FL, USA, March
2005.

[3] J. Sommers, H. Kim, and P. Barford, "Harpoon: A Flow-Level Traffic
Generator for Router and Network Tests," ACM SIGMETRICS 2004,
New York, NY, USA, Abstract and Poster, June 2004.

	I. Introduction
	II. HISTORY Project
	III. Related Work
	IV. npag – Network Packet Generator
	A. Objective
	B. Design
	C. Policy-based configuration
	D. Outlook

	V. paco – Packet Coordinator
	Acknowledgements
	References

